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Density functional theory of long-range critical wetting

A. González and M. M. Telo da Gama
Departamento de Fı´sica da Faculdade de Cieˆncias e Centro de Fı´sica da Mate´ria Condensada da Universidade de Lisboa,

Avenida Professor Gama Pinto, 2, P-1649-003 Lisboa Codex, Portugal
~Received 16 June 2000!

The wetting properties of a fluid adsorbed at a solid substrate are studied by means of density functional
theory. Explicit calculations of the substrate-liquid and substrate-gas density profiles are carried out and used
to evaluate the asymptotic expansion for the interface potential of a system with long-range interactions. The
range of validity of the asymptotic expansion is checked by comparing it with the interface potential obtained
numerically through the constrained minimization of the density functional free energy. Depending on the
parameters of the fluid-fluid and substrate-fluid interactions we find first-order or critical wetting transitions. In
a limited range of parameters, the critical wetting transition is preceded by a first-order transition between a
microscopic and a mesoscopic film, thus corroborating previous calculations and experiments for alkanes on
brine. We find that the behavior of the alkanes on brine is not universal, since it requires fine-tuning of the
fluid-fluid and substrate-fluid interactions. Finally, we investigate the influence of the short- and long-range
forces on the location of the first-order transition. We find that for the models studied, the long-range forces
cannot be treated perturbatively. Thus for this type of model it is not possible to separate the effects of short-
and long-range forces as done in Landau theories, where the long-range forces are treated perturbatively.

PACS number~s!: 68.10.2m, 68.45.Gd
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I. INTRODUCTION

Wetting and nonwetting are most commonly described
terms of a liquid droplet on a substrate, under conditions
liquid-gas coexistence. The three interfacial tensions are
lated by the~force balance! equation of Young@1,2#

gsg5gsl1g lg cos~u!, ~1!

where u is the contact angle. Nonwetting occurs whenu
Þ0. As the temperature is raised, the contact angle m
vanish and the system is said to undergo a wetting transit
i.e., the interface between the substrate and the gas bec
macroscopic through the formation of a thick liquid lay
@3#. This transition is of first or second order, as illustrated
a series of recent experiments@4#.

A powerful method used in the study of wetting tran
tions is the interface potentialv( l ), defined as the exces
free energy per unit area of a substrate-gas interface wi
wetting layer of thicknessl, with respect to an infinite layer
For largel, the interface potential of a system with van d
Waals forces tends to zero as

v~ l !5
a

l 2
, ~2!

wherea, the Hamaker constant, is proportional to the net v
der Waals forces between the interfaces bounding the
ting film. Thus, for fluids with constanta critical wetting
does not occur since the wetting transition is of first orde
a.0 and the interface is pinned ifa,0 @1,2#.

The Hamaker constant, however, depends on the bulk
larizabilities in a subtle way@5# and
PRE 621063-651X/2000/62~5!/6571~6!/$15.00
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v~ l !5
a2~T!

l 2 1
a3

l 3 1••• ~3!

is a more realistic asymptotic potential and long-range cr
cal wetting may occur whena2→02. Indeed, critical wetting
driven by a vanishing Hamaker constant was predicted th
retically more than a decade ago@6,7# and was first observed
for pentane on water recently@8#.

Subsequent experiments, with hexane on brine@9#, indi-
cated that a first-order transition precedes the critical wet
transition observed at higher temperatures. At this first-or
transition, a~microscopic! thin film coexists with a~meso-
scopic! thick film at a temperature where a first-order wetti
transition would occur in the absence of~weak! long-range
interactions@9,10#. This sequence of transitions results fro
the competition of short- and long-range forces. When
temperature is raised, the balance of the long-range fo
changes to favor wetting, and critical wetting occurs at
temperature where the Hamaker constant vanishes.

While a sequence of two transitions was predicted th
retically, in this context, for a particular model years ago@7#,
a systematic study based on an extension of Cahn’s th
that includes weak long-range substrate-fluid interactio
appeared only recently@10#. The theory treats the long-rang
solid-fluid interactions as a perturbation of the free energy
a system with short-range interactions, and thus the ques
of separating the long- and short-range forces for a spe
model remains open.

Density functional theory~DFT! has become one of th
most useful microscopic approaches to inhomogeneous
ids and wetting phenomena@11#. The latest generation o
DFTs is designed to describe~i! the bulk fluid equation of
state~away from the bulk critical point!, ~ii ! the liquid-gas
interfacial structure, and~iii ! the fluid’s response to short
wavelength perturbations. These theories provide the me
6571 ©2000 The American Physical Society
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6572 PRE 62A. GONZÁLEZ AND M. M. TELO da GAMA
to study the effects of short- and long-range interactions,
nonperturbative fashion, for a given interaction model. DF
neglect the effects of capillary waves, but these are irrelev
for long-range critical wetting in three dimensions@12#.

In this paper we use a mean-field free energy functio
@11# with a reference term given by the~nonlocal!
fundamental-measures theory~FMT! @13#. In Sec. II we give
a brief account of DFT and of the corresponding interfa
potential. In Sec. III we summarize the results of t
asymptotic expansion of the interface potential derived
@12#. In Sec. IV details of the interactions and of the refe
ence free energy functional are given, and in Sec. V
present our results. We finish with some comments and c
cluding remarks.

II. DENSITY FUNCTIONAL THEORY FOR WETTING:
INTERFACE POTENTIAL

Density functional theory@11# was introduced in the stud
of inhomogeneous fluids more than 25 years ago@14# and
was followed by the discovery of the prewetting transiti
@15#, independently from Cahn’s seminal work on wettin
@3#. DFTs are still one the most useful descriptions of w
ting, although applications of the most sophisticated fu
tionals to wetting problems are scarce. As we will discu
below this is due to the nontrivial effort required to impl
ment numerical calculations with these density functiona
when the interfaces become mesoscopic. This is indeed w
happens for the alkanes on brine, where a discontinuous
sition from a microscopic to a mesoscopic film precedes
critical wetting transition. Here, we overcome this difficul
by combining direct~brute force! numerical minimization of
the free energy functional, with the evaluation of the int
face potential~for the same functional!, using the analytic
expansion derived in@12#.

Since the application of DFT to wetting has come of a
we simply quote the main results. Consider an open, sin
component, inhomogeneous system in the presence of a
ternal potentialVext(r ). It can be shown@11# that the grand
potential of a fluid with pairwise interaction potentialv(r ) at
temperatureT and chemical potentialm is the minimum of
the functional

V@r#5F @r#1E dr @Vext~r !2m#r~r !, ~4!

where, for fixedv(r ), the intrinsic Helmholtz free energyF
is a unique functional of the densityr(r ), i.e., it does not
depend on the external potential.

The equilibrium profile is determined by minimizing Eq
~4!, i.e.,

dV@r#

dr~r !
50. ~5!

Once the form ofF @r# is known, Eq.~5! can be used to
calculate the equilibrium structure of the system. Details
the numerical method used to solve this equation, for a p
ticular form of F to be described below, may be found
@16#.
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Let va(r )5v ref(r )1a@v(r )2v ref(r )#, with aP@0,1#.
Using the coupling constant algorithm@17#, F may be writ-
ten as@11#

F @r#5Fref@r#1 1
2 E

0

1

daE drdr 8r (2)~r ,r 8;a!va~ ur2r 8u!,

~6!

where va(r )5v(r )2v ref(r ) and Fref@r# is the free energy
functional of a system with pair potentialv ref(r ) and density
r(r ). r (2)(r ,r 8;a) is the pairwise density distribution func
tion of a system at the same densityr(r ) and where the
particles interact via the pair potentialva(r ).

In three dimensionsF is known exactly for ideal gase
only, although good approximations exist for fluids of ha
spheres~HS!. As in most applications we will take a fluid o
HS as our reference system, but for the moment we do
need to specifyFref . If the remaining interactionsva vary
slowly on the scale ofv ref their contribution toF may be
treated at the mean-field level, i.e., the pairwise density
tribution function is approximated by its~larger ) asymptotic
limit. Then the mean-field free energy functional is

V@r#5Fref@r#1 1
2 E drdr 8r~r !r~r 8!va~ ur2r 8u!

1E dr @Vext~r !2m#r~r !. ~7!

Equation~7! neglects the fluctuations that cause bulk pro
erties to deviate from their classical behavior and capill
waves. The former are important in the critical region, clo
to the bulk critical point, while the latter are excited at lo
temperatures. However, in systems with long-range forc
capillary waves are irrelevant for wetting transitions in thr
bulk dimensions@1#.

If we consider a fluid in contact with a~structureless!
planar substrate, we can rewrite Eq.~7! as the sum of a bulk
contribution, proportional to the volume of the fluidV, plus a
surface contribution proportional to the area of the subst
A @12#

V@r~z!#5VVb~rb!1AVs@r~z!#, ~8!

where subscripts b and s stand for bulk and surface, res
tively, andr(z) is the density profile that varies only in th
direction perpendicular to the surface. If the density far fro
the substrate is that of the bulk fluid,rb is a minimum ofVb
~liquid or gas, with densitiesr l andrg , respectively! and the
equilibrium states of the system are given by the minim
of the surface termVs. At liquid-gas coexistence the surfac
term can be written as

Vs~ l !5gsl1g lg1v~ l !, ~9!

with gsl andg lg the substrate-liquid and liquid-gas interfaci
tensions, andv( l ) the interface potential. In Eq.~9! we have
replaced the functional dependence ofVs on r(z), by a de-
pendence onl, the thickness of the liquid layer adsorbed
the substrate. This thickness will be defined byr( l )5(r l
1rg)/2, although other definitions are possible@12#. The ex-
trema of v( l ) reproduce the stable~minima! and unstable
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~maxima! thermodynamic states, but only the local minim
have direct physical significance. In contrast to the equi
rium free energy, its nonequilibrium extensionv( l ) is not
uniquely defined. For a review see, e.g.,@18#.

It turns out that a particularly transparent analysis of w
ting phenomena follows from the interface potential. Th
potential represents the substrate-gas interfacial tension
der the restriction that a liquid film with thicknessl is present
at the interface. The actual interfacial tensiongsg and equi-
librium thicknessl 0 are obtained by minimizingv( l ). The
interface potential may be found numerically by a co
strained minimization of the free energy functional, at fix
l. In addition, at largel an analytical expansion for system
with long-range forces is available@12# and can be evaluate
for the same free energy functional. The characteristic f
tures of critical and complete wetting—for whichl 0 diverges
smoothly—are determined by the asymptotic behavior
v( l ), and this behavior is most easily described using
asymptotic expansion. The location of first-order transitio
however, requires the~constrained! numerical minimization
of the free energy functional.

III. ASYMPTOTIC EXPANSION OF THE INTERFACE
POTENTIAL

In the presence of long-range van der Waals forces
tween particles ~fluid-fluid and substrate-fluid! the
asymptotic form ofv( l ) ( l @j, where j is the fluid bulk
correlation length! is given by@12#

v~ l→`!52(
i>2

ai

l i
, ~10!

wherea2 is proportional to the Hamaker constant@5#.
Dietrich and Napio´rkowski @12# derived analytic expres

sions for the coefficientsai ~up to i 54) in the framework of
the mean-field functional described in the preceding sect
and showed that they are given in terms of~a! the coeffi-
cients of the asymptotic expansions of the substrate-fluid
fluid-fluid interactions, and~b! the spatial moments of th
equilibrium density profiles of the substrate-liquid a
liquid-gas interfaces. Their approach takes into account
van der Waals tails of the interfaces and the~short-range!
structure of the substrate-liquid and liquid-gas interfaces

In the following we summarize their results. Assume th
the substrate-fluid potential has the asymptotic expansio

Vext~z→`!52(
i 53

`
ui

zi
, ~11!

and that the laterally averaged fluid-fluid potential, defined

t~z!5E
z

`

dz8E dr iv@~r i
21z82!1/2#, ~12!

has a similar expansion

t~z→`!52(
i 53

`
t i

zi
. ~13!

The first-order coefficient in Eq.~10! is found to be
-

-

n-

-
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a25
1

2
~r l2rg!~u32r lt3!, ~14!

and depends on the leading coefficients of the long-ra
interactions~11! and ~13! and on the coexisting liquid and
gas densities. Equation~14! is exactly the same as the ex
pression found in previous derivations, for pure Lenna
Jones systems, using simpler~sharp-kink! approximations
for the interfacial structure~see, e.g.,@1,2#!. Note that al-
though there is no explicit dependence ofa2 on the tempera-
ture, it does depend onT through the coexisting densitie
r l(T) and rg(T), and thus it may vanish at a temperatu
below the bulk critical temperature. In this case the next-
leading term in Eq.~10! is required to be positive and has
be included.

Higher-order coefficients of the interface potentiali
>3) depend explicitly on the higher-order coefficients of t
interactions and on the interfacial structure. The latter ari
through the moments of the substrate-liquid and liquid-g
density profiles defined as@12#

dsl
( i )5 i E

0

`

dzzi 21@12rsl~z!/r l# ~15!

and

dlg
( i )5

i

r l2rg
E

2`

`

dzzi 21@r lg~z!2rsk~z!#, ~16!

respectively. Herersk(z) is the sharp-kink profile

rsk~z!5H r l , z, l

rg , l ,z,
~17!

wherel is defined as in the preceding section. The mome
are calculated by numerical integration of the substra
liquid and liquid-gas density profiles, obtained by numeric
minimization of the free energy functional~7!.

The expressions fora3 and a4 obtained in this fashion
differ from earlier results obtained using a sharp-kink a
proximation. For details see@12#.

We use these asymptotic results to test the accuracy o
interface potentialv( l ) obtained from the restricted minimi
zation of the~same! free energy functional, at largel. Our
numerical results forv( l ) are used, in turn, to test the rang
of validity of the asymptotic expansion~10!.

IV. MODEL INTERACTIONS AND REFERENCE
FREE ENERGY

It remains to specify the model interactions and the ref
ence free energy functional. We have restricted ourselve
simple pair interactions with a minimum number of para
eters. In order to allow for the possibility of long-range cri
cal wetting, the fluid-fluid potential has the form

v~r !5vHS~r !2eFv7S s

r D 7

1v6S s

r D 6Gu~r 2s!, ~18!

whereu(r ) is the usual Heaviside step function andvHS(r )
is the HS potential
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vHS~r !5H `, r ,s

0, s,r ,
~19!

wheres, the hard-sphere diameter, sets the unit of leng
and e the unit of energy. The usual reduced temperat
T* 5kBT/e is therefore employed. We assume that the
ternal ~substrate-fluid! potential has a similar expansion

Vext~z!5vHS~z!2eFu4S s

z D 4

1u3S s

z D 3Gu~z2s!. ~20!

In order to investigate the competition between short- a
long-range forces, invoked as the cause of the wetting be
ior of alkanes on water, we constructed related short-ra
potentials by setting Eqs.~18! and ~20! to zero at distances
greater thanr c and zc , respectively. To avoid numerica
problems due to discontinuities, the short-range potent
are required to vanish at the cut off distance through a lin
extrapolation of the corresponding long-range potentials~see
Fig. 1!. By contrast with Ref.@10#, we do not assume that th
short-range forces determine the location of the first-or
wetting transition, while the long-range forces are resp
sible for the finite thickness of the wetting film and for th
location of the critical wetting transition@10#.

Consequently, we do not require~and indeed cannot de
fine! a criterion for the cutoff distance as used in@10#. In-
deed, we found~see Sec. V! that for the potentials considere
in this work, and up to cutoff distances of various molecu
diameters, significant differences are observed in the loca
of the first-order wetting transitions.

Finally, our choice of the fluid-fluid interactions, Eq.~18!,
renders the choice of reference system unique. We div
v(r ) into a reference, HS partv ref(r )5vHS(r ), and an attrac-
tive term

va~r !5v~s!1@v~r !2v~s!#u~r 2s!. ~21!

A similar division is used for the~cutoff! short-range poten
tials.

There are several good approximations for the free ene
functional of fluids of hard spheres. We choose to use for
reference free energy functional the~nonlocal! fundamental-
measures theory of Rosenfeld@13#, which is probably the
best approximation available for nonuniform HS system
The explicit form ofFref in FMT can be found in Ref.@13#.

FIG. 1. Construction of the short-range~SR! fluid-fluid potential
from its long-range~LR! counterpart, forr c52.0s. A similar pro-
cedure is applied to the substrate-fluid potential.
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One of the strengths of the present work is that the wett
behavior of models characterized by well-defined inter
tions is analyzed in terms of a free energy functional t
treats the short- and long-range models in the same fash

V. RESULTS

We have studied fluids with interactions specified byv7
5v653/p50.955, and solid substrates characterized
2.5<u4<3.0 andu350.3. An infinite cutoff corresponds to
systems with long-range interactions, while a finite cut
characterizes the corresponding short-range system.

The interaction parameters were chosen in order to y
first-order and critical wetting transition temperatures a
reasonable distance from the bulk critical temperature. T
structure at the first-order transition is illustrated in Fig.
where we plot the coexisting profiles for long- and sho
range~LR and SR, respectively! systems, at a substrate cha
acterized byu452.7. The profiles are similar, although th
density of the liquid adsorbed layer is higher for the S
model, resulting in a slightly more structured profile. The g
density is lower in the SR model. These differences are
to the lower transition temperature of the SR mod
@Tw,1* /Tc* '0.76 for the long-range~LR! model and 0.67 for
the SR model#. Interface potentials obtained for the LR sy
tem are plotted in Fig. 3, clearly indicating a first-order tra
sition atT* '1.0125. On the other hand, the absence of

FIG. 2. Density profiles of the LR (T* 51.0125, solid line! and
SR ~cutoff at two molecular diameters,T* 50.863, dashed line!
models withu452.7, for the nonwet and wet states in coexisten
at the first-order transition.

FIG. 3. Interface potentialsv( l ) for an LR system withu4

52.7 ~solid lines!. From top to bottom,T* 51.020, 1.0125, and
1.000. The dashed line shows the result of the asymptotic expan
@12# ~up to fourth order! for T* 51.020.
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sults for 1.5s, l ,2.3s is due to the fact that the states
this region are highly unstable, making it extremely difficu
to obtain a sensible value of its energy.

The coefficients of the interface potential,ai , are found
by fitting the results forv( l ) ~obtained through a constraine
minimization of Vs) to the asymptotic form~10!, in the
range 10s< l<20s. The length of the meshes used in t
numerical work is of the order of 300s, but only results in a
region of'20s from the substrate have proven sufficien
accurate by comparison with the analytical results. T
range ofl is adequate for our purposes.

In Fig. 4 we compare the coefficientsa2 anda3 obtained
using the asymptotic method of Ref.@12# and the presen
approach. While the differences ina2 are less than 1%~the
critical-wetting temperature is Tw,c* '1.04 using the
asymptotic method compared toTw,c* '1.03 from the con-
strained numerical minimization!, there are significant differ-
ences for the higher-order coefficients. These discrepan
result from a combination of limited numerical accuracy
the constrained minimization ofVs at largel, the interpola-
tion used to calculate the coefficients, and the numer
evaluation of the moments of the density profiles, required
calculate the coefficients of the analytical expansion. Th
numerical procedures are very demanding since they inv
differences of small numbers over a wide range ofl.

The present approach, however, yields the interface
tential in the vicinity of the substrate, and it is particular
accurate at and around its first minimum, which is beyo
the range of the asymptotic approach (i<4). This is illus-
trated in Fig. 3, where it is clear that, while the asympto
result is accurate forl .5s, it cannot describe the structur
of v( l ) at smalll. In particular, it misses the first minimum
and thus fails to describe the first-order transition betwee
thin and thick film that occurs in these systems.

As mentioned previously, both approaches yield a criti
wetting transition for this LR system: the leading term of t
expansion~10! changes from negative~preventing wetting!
to positive~favoring wetting!, while the next-to-leading term
remains positive~favoring wetting!. The critical wetting
transition occurs atTw,c* '1.03, thus following a first-orde
transition atTw,1* '1.0125~see Fig. 3!. In Fig. 5 the thickness
of the adsorbed liquid layer, calculated using the asympt
expansion, plotted as a function of temperature, illustra
this sequence of transitions.

This behavior, however, is far from universal, as shown

FIG. 4. Values of the coefficientsai of v( l ), obtained from the
asymptotic expansion of Ref.@12# and from the present approach
s

ies

al
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e
e

o-

d
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l
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n

Table I. If the substrate is made slightly less attractive~by
changingu452.7 to 2.5) we findTw,c* ,Tw,1* and thus critical
wetting is prevented. Note that for this range of paramet
Tw,c* is almost constant, sincea2 depends explicitly only on
u3 @see Eq.~14! and below#. Table I also includes the~first-
order! wetting temperatures for an SR (r c5zc52s) model.
The first-order wetting temperatures are significantly diff
ent for the LR and SR systems, although they appear to
related. For an SR model defined in this fashion, the
forces have a nonperturbative effect on the structure ofv( l ),
at smalll, and thus they affect the location of the first-ord
transition. We have repeated the calculation for an SR mo
with r c5zc53s ~see Table I! and found that, even in this
case, the LR transition temperature is not recovered. T
means that there is no way of clearly separating the effect
short- and long-range forces, at least for the class of syst
studied in this paper.

VI. CONCLUSIONS

We have investigated, by means of density functio
theory, the influence of the short- and long-range forces
the location and nature of the wetting transition, for a flu
adsorbed at a solid substrate. To this end, we have calcu
numerically the interface potential of the system,v( l ). In
addition, we have calculated the substrate-liquid and liqu
gas density profiles, in order to evaluate the asymptotic
pansion of the interface potential,v( l ), derived by Dietrich
and Napio´rkowski @12#. We found that both approache
agree forl>5s, but yield different results closer to the sub
strate. In particular, the asymptotic expansion fails to
scribe the first minimum of the interface potential obtain
via DFT.

We have investigated the location and nature of the w
ting transitions and found that a sequence of two transiti

FIG. 5. Thickness of the adsorbed layer for an LR system w
u452.7 exhibiting a sequence of two transitions atT* 51.0125 and
T* 51.03.

TABLE I. Transition temperatures for LR and SR systems a
function ofu4. Cutoff distancesr c5zc52s andr c5zc53s for SR
I and II, respectively.

u4 Tw,c* LR Tw,1* LR Tw,1* SR I Tw,1* SR II

2.5 1.060 1.100 0.97
2.7 1.029 1.013 0.86 0.94
3.0 1.038 1.001 0.865
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may occur, as observed by Shahidzadehet al. @9# for alkanes
on brine. We checked that this behavior depends sensiti
on the parameters of the substrate-fluid and fluid-fluid in
actions. By changing slightly the substrate-fluid potential,
first-order wetting transition temperature increases ab
that of critical wetting and only first-order wetting occurs
the system, in agreement with earlier calculations based
simpler free energy@19#. Those calculations also suggest th
the sequence of two transitions, occurs only in a limited
gion of the interaction parameter space.

One of the aims of this work was the construction of
short-range counterpart of a microscopic long-range po
tial, capable of accounting for the first-order transition
ferred to above. This would justify the treatment of the lon
range potential as a perturbation, responsible for the crit
wetting transition only. We found that the cutoff procedu
developed here cannot account for the location of the fi
,

nn

J

, J
ly
r-
e
e

a
t
-

n-
-
-
al

t-

order wetting transition, unless very large cutoffs are us
Thus, for this type of interaction, there is no way of clea
separating the short- and long-range forces. Further inve
gations, including a connection with the wetting of alkan
on water, are clearly required.

Finally, this implementation of an accurate DFT theo
~combining brute force numerical minimization with th
evaluation of the asymptotic interface potential! may be ap-
plied to other types of critical wetting, namely triple poin
wetting and complete wetting@1,2# where new experimenta
findings have been reported@20–22#.
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